Pre-Calculus CP 1 – Section 8.2 Notes Matrix Operations

Name: KEY

A Matrix is an arrangement of numbers in rows and columns

Tows by columns

The $\underline{\textbf{Dimensions}}$ of a matrix are written as m x n, where m is rows and n is columns

The **Entries** of a matrix are the numbers within the brackets

Examples: Give the dimensions of the matrices below:

In matrix A, the entry in the third row, second column is written a_{32} and is equal to -1

Two matrices are equal if they have the same numbers in the same entries

Examples: Are the following matrices equal?

a)
$$\begin{bmatrix} 5 & 0 \\ \frac{-3}{4} & \frac{4}{4} \end{bmatrix}$$

$$\begin{bmatrix} 5 & 0 \\ -.75 & 1 \end{bmatrix} \xrightarrow{165}$$
 b)
$$\begin{bmatrix} 2 & 6 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} -2 & 6 \\ -3 & 0 \end{bmatrix} \xrightarrow{\text{ND}}$$

To ADD or SUBTRACT matrices, you add or subtract corresponding entries

*** You can ONLY add or subtract matrices if they have the SAME DIMENSIONS***

Examples: Perform the indicated operation, if possible

a)
$$\begin{bmatrix} 0 \\ 4 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ -9 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \\ 11 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 8 & 3 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} 2 & -7 \\ 6 & -1 \end{bmatrix} = \begin{bmatrix} 6 & 10 \\ -2 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 9 & -7 \end{bmatrix} + \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

d)
$$\begin{bmatrix} 7 & 8 & 1 \\ -9 & 0 & 4 \end{bmatrix}$$
 $-\begin{bmatrix} 1 & 0 & 7 \\ 1 & 3 & -3 \end{bmatrix}$ $=\begin{bmatrix} 6 & 8 & -6 \\ -10 & -3 & 7 \end{bmatrix}$

e)
$$\begin{bmatrix} 3 & 6 \\ -3 & -6 \end{bmatrix} + \begin{bmatrix} -4 & 5 \\ -7 & 8 \end{bmatrix} - \begin{bmatrix} 0 & 2 \\ -10 & 11 \end{bmatrix} = \begin{bmatrix} -1 & 9 \\ 0 & -9 \end{bmatrix}$$

Pre-Calculus CP 1 – Section 8.2 Notes

In matrix algebra, a **real number** is often called a SCALAR

To multiply a matrix by a scalar, you multiply each entry in the matrix by the scalar. This process is called **scalar multiplication**.

Examples: Perform the indicated operations:

a)
$$6\begin{bmatrix} 2 & -3 \\ 8 & 4 \end{bmatrix} = \begin{bmatrix} 172 & -187 \\ 48 & 24 \end{bmatrix}$$

a)
$$6\begin{bmatrix} 2 & -3 \\ 8 & 4 \end{bmatrix} = \begin{bmatrix} 17 & -18 \\ 18 & 24 \end{bmatrix}$$
 b) $-2\begin{bmatrix} 4 & -7 \\ 3 & 3 \\ 2 & -9 \end{bmatrix} + \begin{bmatrix} 3 & 6 \\ 9 & -8 \\ 1 & -4 \end{bmatrix} = \begin{bmatrix} -5 & 20 \\ 3 & -14 \\ -3 & 14 \end{bmatrix}$

When k = -1, the scalar product is -A and is called the OPPOSITE matrix

If
$$A = \begin{bmatrix} 3 & -5 \\ 0 & 2 \end{bmatrix}$$
 then $-A = \begin{bmatrix} -3 & 5 \\ 0 & -2 \end{bmatrix}$ and if we added them the result would be $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

(this is called the ZERO matrix)

You can also use matrices to set up equations and SOLVE for missing variables:

$$2x = y_2$$

 $2x + 3y = 12$
 $2x + 3(2x) = 12$
 $6x = 12$
 $7 = \frac{12}{6} = \frac{3}{2}$
 $y = 2(\frac{3}{2}) = 3$

Ex 2): solve the matrix equation for x and y

$$4\left[\begin{array}{cc} 8 & 0 \\ -1 & 2y \end{array}\right] + \left[\begin{array}{cc} 4 & -2x \\ 1 & 6 \end{array}\right] = \left[\begin{array}{cc} 48 & -48 \\ 0 & 2 \end{array}\right] \qquad 4\left(0 - 2x\right) = -48$$

$$4(0-2x) = -48$$

 $-8x = -48$
 $4(2y+6) = 2$
 $8y+2y=2$
 $8y = -22$
 $y = -\frac{22}{8} = -\frac{11}{4}$

Pre-Calculus CP 1 – Section 8.2 Notes

This problem may look familiar from Geometry....

Perform a **Dilation** of magnitude $\frac{1}{2}$ on the quadrilateral below:

Pre-Calculus CP 1 - Section 8.2 Notes

Matrix Operations

REAL LIFE problem!

Use matrices to organize the following information about condominium fees.

1 2 R

Condo owners must pay yearly fees to cover the cost of maintenance, landscaping, and remodeling. The fees this year, in the order from above, are \$96, \$18, and \$66 for a 1-bedroom unit, and \$128, \$24, and \$88 for a 2-bedroom unit.

The fees next year, in the order from above, will be \$105, \$20, and \$73 for a 1-bedroom and \$141, \$26, and \$97 for a 2-bedroom unit.

Use matrices to organize the information-label your rows and columns!!

What are the differences in fees from this year to next year?

$$B-A = 18R \begin{bmatrix} 9 & 2 & 7 \\ 13 & 2 & 9 \end{bmatrix}$$